GEOFISIKA TAMBANG


Geofisika

Geofisika adalah bagian dari ilmu bumi yang mempelajari bumi menggunakan kaidah atau prinsip-prinsip fisika. Di dalamnya termasuk juga meteorologi, elektrisitas atmosferis dan fisika ionosfer. Penelitian geofisika untuk mengetahui kondisi di bawah permukaan bumi melibatkan pengukuran di atas permukaan bumi dari parameter-parameter fisika yang dimiliki oleh batuan di dalam bumi. Dari pengukuran ini dapat ditafsirkan bagaimana sifat-sifat dan kondisi di bawah permukaan bumi baik itu secara vertikal maupun horisontal.
Dalam skala yang berbeda, metode geofisika dapat diterapkan secara global yaitu untuk menentukan struktur bumi, secara lokal yaitu untuk eksplorasi mineral dan pertambangan termasuk minyak bumi dan dalam skala kecil yaitu untuk aplikasi geoteknik (penentuan pondasi bangunan dll).
Di Indonesia, ilmu ini dipelajari hampir di semua perguruan tinggi negeri yang ada. Biasaya geofisika masuk ke dalam fakultas Matematika dan Ilmu Pengetahuan Alam (MIPA), karena memerlukan dasar-dasar ilmu fisika yang kuat, atau ada juga yang memasukkannya ke dalam bagian dari Geologi. Saat ini, baik geofisika maupun geologi hampir menjadi suatu kesatuan yang tak terpisahkan Ilmu bumi.Bidang kajian ilmu geofisika meliputi meteorologi (udara), geofisika bumi padat dan oseanografi(laut). Beberapa contoh kajian dari geofisika bumi padat misalnya seismologi yang mempelajari gempabumi, ilmu tentang gunungapi (Gunung Berapi) atau volcanology, dan eksplorasi seismik yang digunakan dalam pencarian hidrokarbon.
Metode-metode geofisika
Secara umum, metode geofisika dibagi menjadi dua kategori yaitu metode pasif dan aktif. Metode pasif dilakukan dengan mengukur medan alami yang dipancarkan oleh bumi. Metode aktif dilakukan dengan membuat medan gangguan kemudian mengukur respons yang dilakukan oleh bumi. Medan alami yang dimaksud disini misalnya radiasi gelombang gempa bumi, medan gravitasi bumi, medan magnetik bumi, medan listrik dan elektromagnetik bumi serta radiasi radioaktifitas bumi. Medan buatan dapat berupa ledakan dinamit, pemberian arus listrik ke dalam tanah, pengiriman sinyal radar dan lain sebagainya.
Secara praktis, metode yang umum digunakan di dalam geofisika tampak seperti tabel di bawah ini:

(terlampir)

Metode Parameter yang diukur Sifat-sifat fisika yang terlibat
Seismik
Waktu tiba gelombang seismik pantul atau bias Densitas dan modulus elastisitas yang menentukan kecepatan rambat gelombang seismik
Gravitasi Variasi harga percepatan gravitasi bumi pada posisi yang berbeda Densitas
Magnetik Variasi harga intensitas medan magnetik pada posisi yang berbeda Suseptibilitas atau remanen magnetik
Resistivitas Harga resistansi dari bumi Konduktivitas listrik
Polarisasi terinduksi Tegangan polarisasi atau resistivitas batuan sebagai fungsi dari frekuensi Kapasitansi listrik
Potensial diri Potensial listrik Konduktivitas listrik
Elektromagnetik Respon terhadap radiasi elektromagnetik Konduktivitas atau Induktansi listrik
Radar Waktu tiba perambatan gelombang radar Konstanta dielektrik

Eksplorasi seismik

Eksplorasi seismik adalah istilah yang dipakai di dalam bidang geofisika untuk menerangkan aktifitas pencarian sumber daya alam dan mineral yang ada di bawah permukaan bumi dengan bantuan gelombang seismik. Hasil rekaman yang diperoleh dari survei ini disebut dengan penampang seismik.
Eksplorasi seismik atau eksplorasi dengan menggunakan metode seismik banyak dipakai oleh perusahaan-perusahaan minyak untuk melakukan pemetaan struktur di bawah permukaan bumi untuk bisa melihat kemungkinan adanya jebakan-jebakan minyak berdasarkan interpretasi dari penampang seismiknya.
Di dalam eksplorasi seismik dikenal 2 macam metode, yaitu:
1. Metode seismik pantul
2. Metode seismik bias
Gelombang seismik
Gelombang seismik adalah rambatan energi yang disebabkan karena adanya gangguan di dalam kerak bumi, misalnya adanya patahan atau adanya ledakan. Energi ini akan merambat ke seluruh bagian bumi dan dapat terekam oleh seismometer.
Efek yang ditimbulkan oleh adanya gelombang seismik ini adalah apa yang kita kenal sebagai fenomena gempa bumi.
Gelombang seismik digolongkan menjadi 2 jenis, yaitu
1. Gelombang Badan (body wave)
2. Gelombang Permukaan (surface wave)
Seismometer

Seismometer (bahasa Yunani: seismos: gempa bumi dan metero: mengukur) adalah alat atau sensor getaran, yang biasanya dipergunakan untuk mendeteksi gempa bumi atau getaran pada permukaan tanah. Hasil rekaman dari alat ini disebut seismogram.
Prototip dari alat ini diperkenalkan pertama kali pada tahun 132 SM oleh matematikawan dari Dinasti Han yang bernama Chang Heng. Dengan alat ini orang pada masa tersebut bisa menentukan dari arah mana gempa bumi terjadi.
Dengan perkembangan teknologi dewasa ini maka kemampuan seismometer dapat ditingkatkan, sehingga bisa merekam getaran dalam jangkauan frekuensi yang cukup lebar. Alat seperti ini disebut seismometer broadband.
Seismogram

Seismogram
Seismogram atau rekaman gerakan tanah, atau grafik aktifitas gempa bumi sebagai fungsi waktu yang dihasilkan oleh seismometer. Rekaman ini dapat dipergunakan salah satunya untuk menentukan magnitudo gempa tersebut. Selain itu dari beberapa seismogram yang direkam di tempat lain, kita dapat menentukan pusat gempa atau posisi dimana gempa tersebut terjadi.
Magnitudo gempa
Magnitudo gempa adalah parameter gempa yang berhubungan dengan besarnya kekuatan gempa di sumbernya. Jadi pengukuran magnitudo yang dilakukan di tempat yang berbeda, harus menghasilkan harga yang sama walaupun gempa yang dirasakan di tempat-tempat tersebut tentu berbeda. Richter pada tahun 30-an memperkenalkan konsep magnitudo untuk ukuran kekuatan gempa di sumbernya. Satuan yang dipakai adalah skala Richter (Richter Scale), yang bersifat logaritmik. Pada umumnya magnitudo diukur berdasarkan amplitudo dan periode fase gelombang tertentu. Rumus untuk menentukan magnitudo gempa yang umum dipakai pada saat ini adalah:

dengan M adalah magnitudo, a adalah amplitudo gerakan tanah (dalam mikron), T adalah periode gelombang, Δ adalah jarak pusat gempa atau episenter, h adalah kedalaman gempa, CS adalah koreksi stasiun oleh struktur lokal (sama dengan 0 untuk kondisi tertentu), dan CR adalah koreksi regional yang berbeda untuk setiap daerah gempa. Ada beberapa jenis magnitudo yang pernah diperkenalkan dan dipakai sampai saat ini. ML adalah magnitudo lokal yang diperkenalkan oleh Richter untuk mengukur magnitudo gempa di California menggunakan fase gelombang P. MS diperkenalkan oleh Guttenberg menggunakan fase gelombang permukaan terutama gelombang R. Magnitudo lain yaitu mb (body waves magnitudo) diukur berdasar amplitudo gelombang badan, baik P atau S.
Magnitudo Lokal

Magnitudo lokal ML diperkenalkan oleh Richter untuk mengukur magnitudo gempa-gempa lokal, khususnya di California Selatan. Nilai amplitudo yang digunakan untuk menghitung magnitudo lokal adalah amplitudo maximum gerakan tanah (dalam mikron) yang tercatat oleh seismograph torsi (torsion seismograph) Wood-Anderson, yang mempunyai periode natural = 0,8 sekon, magnifikasi (perbesaran) = 2800, dan faktor redaman = 0,8. Jadi formula untuk menghitung magnitudo lokal tidak dapat diterapkan di luar California dan data amplitudo yang dipakai harus yang tercatat oleh jenis seismograph di atas.
Magnitudo gelombang badan

Magnitudo gempa yang diperoleh berdasar amplitudo gelombang badan (P atau S) disimbulkan dengan mb. Dalam prakteknya (di USA), amplitudo yang dipakai adalah amplitudo gerakan tanah maksimum dalam mikron yang diukur pada 3 gelombang yang pertama dari gelombang P (seismogram periode pendek, komponen vertikal), dan periodenya adalah periode gelombang yang mempunyai amplitudo maksimum tersebut. Sudah tentu rumus yang dipakai untuk menghitung mb ini dapat digunakan disemua tempat (universal). Tapi perlu dicatat bahwa faktor koreksi untuk setiap tempat (stasiun gempa) akan berbeda satu sama lain.
Magnitudo gelombang permukaan
Magnitudo yang diukur berdasar amplitudo gelombang permukaan disimbulkan dengan MS. secara praktis (di USA) amplitudo gerakan tanah yang dipakai adalah amplitudo maksimum gelombang permukaan, yaitu gelombang Rayleigh (dalam mikron, seismogram periode panjang, komponen vertikal, periode sekon) dan periodenya diukur pada gelombang dengan amplitudo maksimum tersebut.
Hubungan antar magnitudo
Dalam menentukan magnitudo, tidak ada keseragaman materi yang dipakai kecuali rumus umumnya, yaitu persamaan diatas tadi. Untuk menentukan mb misalnya, orang dapat memakai data amplitudo gelombang badan (P dan S) dari sebarang fase seperti P, S, PP, SS, pP, sS (yang jelas dalam seismogram). Seismogram yang dipakaipun dapat dipilih dari komponen vertikal maupun horisontal (asal konsisten). Demikian juga untuk penentuan MS. Oleh karena itu, kiranya dapat dimengerti bahwa magnitudo yang ditentukan oleh institusi yang berbeda akan bervariasi, walaupun mestinya tidak boleh terlalu besar.
Namun demikian, tampaknya ada hubungan langsung antara mb dan MS, yang secara empiris ditulis sebagai: mb = 0.56MS + 2,9
Energi gempa
Kekuatan gempa disumbernya dapat juga diukur dari energi total yang dilepaskan oleh gempa tersebut. Energi yang dilepaskan oleh gempa biasanya dihitung dengan mengintegralkan energi gelombang sepanjang kereta gelombang (wave train) yang dipelajari (misal gelombang badan) dan seluruh luasan yang dilewati gelombang (bola untuk gelombang badan, silinder untuk gelombang permukaan), yang berarti mengintegralkan energi keseluruh ruang dan waktu. Berdasar perhitungan energi dan magnitudo yang pernah dilakukan, ternyata antara magnitudo dan energi mempunyai relasi yang sederhana, yaitu: logE = 4,78 + 2,57mb dengan satuan energi dyne cm atau erg. Berdasar persamaan tersebut, kenaikan magnitudo gempa sebesar 1 skala richter akan berkaitan dengan kenaikan amplitudo yang dirasakan disuatu tempat sebesar 10 kali, dan kenaikan energi sebesar 25 sampai 30 kali. Untuk mendapatkan gambaran seberapa besar energi yang dilepaskan pada suatu kejadian gempa, kita dapat menggunakan persamaan di atas untuk menghitung energi gempa yang mempunyai magnitudo mb = 6.8. Perhitungan energi ini akan menghasilkan angka sebesar 1022 erg = 1015 joule = 278 juta kWh. Angka ini mendekati energi listrik yang dihasilkan oleh generator berkekuatan 32 mega watt selama 1 tahun. Jadi untuk gempa dengan magnitudo 7.8, energinya menjadi kurang lebih 30 kali lipat dari itu (30 x 278 juta kWh).
Radiasi elektromagnetik

Radiasi elektromagnetik adalah kombinasi medan listrik dan medan magnet yang berosilasi dan merambat lewat ruang dan membawa energi dari satu tempat ke tempat yang lain. Cahaya tampak adalah salah satu bentuk radiasi elektromagnetik. Penelitian teoritis tentang radiasi elektromagnetik disebut elektrodinamik, sub-bidang elektromagnetisme.
Gelombang elektromagnetik ditemukan oleh Heinrich Hertz.
Setiap muatan listrik yang memiliki percepatan memancarkan radiasi elektromagnetik. Waktu kawat (atau panghantar seperti antena) menghantarkan arus bolak-balik, radiasi elektromagnetik dirambatkan pada frekuensi yang sama dengan arus listrik. Bergantung pada situasi, gelombang elektromagnetik dapat bersifat seperti gelombang atau seperti partikel. Sebagai gelombang, dicirikan oleh kecepatan (kecepatan cahaya), panjang gelombang, dan frekuensi. Kalau dipertimbangkan sebagai partikel, mereka diketahui sebagai foton, dan masing-masing mempunyai energi berhubungan dengan frekuensi gelombang ditunjukan oleh hubungan Planck E = Hν, di mana E adalah energi foton, h ialah konstanta Planck 6.626 × 10 −34 J•s dan ν adalah frekuensi gelombang.
Einstein kemudian memperbarui rumus ini menjadi Ephoton = hν.
Spektrum elektromagnetik
Spektrum elektromagnetik menggambarkan berbagai macam radiasi elektromagnetik; spektrum elektromagnetik dapat dijelaskan dalam panjang gelombang, frekuensi, atau tenaga per foton. Spektrum ini secara langsung berkaitan (lihat juga tabel dan awalan SI):
• Panjang gelombang dikalikan dengan frekuensi ialah kecepatan cahaya: 300 Mm/s, yaitu 300 MmHz
• Energi dari foton adalah 4.1 feV per Hz, yaitu 4.1μeV/GHz
• Panjang gelombang dikalikan dengan energy per foton adalah 1.24 μeVm
Spektrum elektromagnetik dibagi dalam beberapa daerah. Cahaya suatu daerah akan diabsorpsi oleh atom atau molekul, dan panjang gelombang cahaya yang diabsorpsi dapat menunjukkan struktur senyawa yang diteliti.
Spektrum elektromagnetik meliputi suatu daerah panjang gelombang yang luas dari sinar gamma gelombang pendek berenergi tinggi sampai pada gelombang mikro dan panjang gelombang sangat panjang. Sinar tampak dari 400 sampai 800 nm dan sinar UV yang berbatasan sekitar 250 sampai 400 nm akan diabsorpsi oleh elektron terluar molekul dan atom. Spektroskopi absorpsi dalam bidang ini disebut spektroskopi elektron. Pada penentuan fotometri nyala logam alkali dan alkali tanah, emisi cahaya juga diukur dalam daerah sinar tampak dan sinar UV.
Transistor IGBT
Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.
Langsung ke: panduan arah, cari
Transistor IGBT (Insulated-Gate Bipolar Transistor) adalah piranti semikonduktor yang setara dengan gabungan sebuah transistor bipolar (BJT) dan sebuah transistor efek medan (MOSFET).
Input dari IGBT adalah terminal Gate dari MOSFET, sedang terminal Source dari MOSFET terhubung ke terminal Basis dari BJT. Dengan demikian, arus drain keluar dan dari MOSFET akan menjadi arus basis dari BJT. Karena besarnya tahanan masuk dari MOSFET, maka terminal input IGBT hanya akan menarik arus yang kecil dari sumber. Di pihak lain, arus drain sebagai arus keluaran dari MOSFET akan cukuo besar untuk membuat BJT mencapai keadaan saturasi. Dengan gabungan sifat kedua elemen tersebut, IGBT mempunyai perilaku yang cukup ideal sebagai sebuah sakelar elektronik. Di satu pihak IGBT tidak terlalu membebani sumber, di pihak lain mampu menghasilkan arus yang besar bagi beban listrik yang dikendalikannya.
Komponen utama di dalam aplikasi elekronika daya (power electronics) dewasa ini adalah sakelar zat padat (solid-state switches) yang diwujudkan dengan peralatan semikonduktor seperti transistor bipolar (BJT),transistor efek medan (MOSFET), maupun Thyristor. Sebuah sakelar ideal di dalam aplikasi elektronika daya akan mempunyai sifat-sifat sebagai berikut:
1. pada saat keadaan tidak menghantar (OFF), sakelar mempunyai tahanan yang besar sekali, mendekati nilai tak berhingga. Dengan kata lain, nilai arus bocor struktur sakelar sangat kecil
2. Sebaliknya, pada saat keadaan menghantar (ON), sakelar mempunyai tahanan menghantar (R_on) yang sekecil mungkin. Ini akan membuat nilai tegangan jatuh (voltage drop) keadaan menghantar juga sekecil mungkin, demikian pula dengan besarnya daya lesapan (power dissipation) yang terjadi, dan (kecepatan pensakelaran (switching speed) yang tinggi.
• Sifat nomor (1) umumnya dapat dipenuhi dengan baik oleh semua jenis peralatan semikonduktor yang disebutkan di atas, karena peralatan semikonduktor komersial pada umumnya mempunyai nilai arus bocor yang sangat kecil.
• Untuk sifat nomor (2), BJT lebih unggul dari MOSFET, karena tegangan jatuh pada terminal kolektor-emitter, VCE pada keadaan menghantar (ON) dapat dibuat sekecil mungkin dengan membuat transitor BJT berada dalam keadaan jenuh (saturasi).
• Sebaliknya, untuk unsur kinerja nomor (3) yaitu kecepatan switching, MOSFET lebih unggul dari BJT, karena sebagai divais yang bekerja berdasarkan aliran pembawa muatan mayoritas (majority carrier), pada MOSFET tidak dijumpai aruh penyimpanan pembawa muatan minoritas pada saat proses pensakelaran, yang cenderung memperlamnat proses pensakelaran tersebut.
Sejak tahun 1980-an telah muncul jenis divais baru sebagai komponen sakelar untuk aplikasi elektronika daya yang disebut sebagai Insulated Gate Bipolar Transistor (IGBT).
Sesuai dengan yang tercermin dari namanya, divais baru ini merupakan divais yang menggabungkan struktur dan sifat-sifat dari kedua jenis transistor tersebut di atas, BJT dan MOSFET. Dengan kata lain, IGBT mempunyai sifat kerja yang menggabungkan keunggulan sifat-sifat kedua jenis transistor tersebut. Terminal gate dari IGBT, sebagai terminal kendali juga mempunyai struktur bahan penyekat (insulator) sebagaimana pada MOSFET.
Dengan demikian, terminal masukan IGBT mempunyai nilai impedansi yang sangat tinggi, sehingga tidak membebani rangkaian pengendalinya yang umumnya terdiri dari rangkaian logika. Ini akan menyederhanakan rancangan rangkaian pengendali (controller) dan penggerak (driver) dari IGBT.
Di samping itu, kecepatan pensakelaran IGBT juga lebih tinggi dibandingkan divais BJT, meskipun lebih rendah dari divais MOSFET yang setara. Di lain pihak, terminal keluaran IGBT mempunyai sifat yang menyerupai terminal keluaran (kolektor-emitter) BJT. Dengan kata lain, pada saat keadaan menghantar, nilai tahanan menghantar (R_on) dari IGBT sangat kecil, menyerupai R_on pada BJT.
Dengan demikian bilai tegangan jatuh serta lesapan dayanya pada saat keadaan menghantar juga kecil. Dengan sifat-sifat seperti ini, IGBT akan sesuai untuk dioperasikan pada arus yang besar, hingga ratusan amper, tanpa terjadi kerugian daya yang cukup berarti. IGBT sesuai untuk aplikasi pada perangkat Inverter maupun Kendali Motor Listrik (Drive).
Resistor

Resistor Variable
Resistor

Simbol resistor (AS dan Jepang)

Resistor Variable
resistor
Simbol resistor (Eropa, IEC)
Sebuah resistor sering disebut werstan, tahanan atau penghambat, adalah suatu komponen elektronik yang dapat menghambat gerak lajunya arus listrik.
Resistor disingkat dengan huruf "R" (huruf R besar). Satuan resistor adalah Ohm, yang menemukan adalah George Ohm (1787-1854), seorang ahli fisika bangsa Jerman. Tahanan bagian dalam ini dinamai konduktansi. Satuan konduktansi ditulis dengan kebalikan dari Ohm yaitu mho.


Gambar diatas adalah gambar Resistor berikut tabel dan besar hambatan beserta gelang warnanya
Kemampuan resistor untuk menghambat disebut juga resistensi atau hambatan listrik. Besarnya diekspresikan dalam satuan Ohm. Suatu resistor dikatakan memiliki hambatan 1 Ohm apabila resistor tersebut menjembatani beda tegangan sebesar 1 Volt dan arus listrik yang timbul akibat tegangan tersebut adalah sebesar 1 ampere, atau sama dengan sebanyak 6.241506 × 1018 elektron per detik mengalir menghadap arah yang berlawanan dari arus.
Hubungan antara hambatan, tegangan, dan arus, dapat disimpulkan melalui hukum berikut ini, yang terkenal sebagai hukum Ohm:

di mana V adalah beda potensial antara kedua ujung benda penghambat, I adalah besar arus yang melalui benda penghambat, dan R adalah besarnya hambatan benda penghambat tersebut.
Berdasarkan penggunaanya, resistor dapat dibagi:
1. Resistor Biasa (tetap nilainya), ialah sebuah resistor penghambat gerak arus, yang nilainya tidak dapat berubah, jadi selalu tetap (konstan). Resistor ini biasanya dibuat dari nikelin atau karbon.
2. Resistor Berubah (variable), ialah sebuah resistor yang nilainya dapat berubah-ubah dengan jalan menggeser atau memutar toggle pada alat tersebut. Sehingga nilai resistor dapat kita tetapkan sesuai dengan kebutuhan. Berdasarkan jenis ini kita bagi menjadi dua, Potensiometer, rheostat dan Trimpot (Trimmer Potensiometer) yang biasanya menempel pada papan rangkaian (Printed Circuit Board, PCB).
3. Resistor NTC dan PTS, NTC (Negative Temperature Coefficient), ialah Resistor yang nilainya akan bertambah kecil bila terkena suhu panas. Sedangkan PTS (Positife Temperature Coefficient), ialah Resistor yang nilainya akan bertambah besar bila temperaturnya menjadi dingin.
4. LDR (Light Dependent Resistor), ialah jenis Resistor yang berubah hambatannya karena pengaruh cahaya. Bila cahaya gelap nilai tahanannya semakin besar, sedangkan cahayanya terang nilainya menjadi semakin kecil.
Gelang Warna pada Resistor
Pada Resistor biasanya memiliki 4 gelang warna, gelang pertama dan kedua menunjukkan angka, gelang ketiga adalah faktor kelipatan, sedangkan gelang ke empat menunjukkan toleransi hambatan.
Berikut Gelang warna dimulai dari warna Hitam, Coklat, Merah, Jingga, Kuning, Hijau, Biru, Ungu (violet), Abu-abu dan Putih.
Sedangkan untuk gelang toleransi hambatan adalah: Coklat 1%, Merah 2%, Hijau 0,5%, Biru 0,25%, Ungu 0,1%, Emas 5% dan Perak 10%. Kebanyakan gelang toleransi yang dipakai oleh umum adalah warna Emas, Perak dan Coklat.
Warna Gelang Pertama Gelang Kedua Gelang Ketiga (multiplier) Gelang ke Empat (toleransi) Temp. Koefisien
Hitam
0 0 ×100
Coklat
1 1 ×101 ±1% (F) 100 ppm
Merah
2 2 ×102 ±2% (G) 50 ppm
Jingga
3 3 ×103 15 ppm
Kuning
4 4 ×104 25 ppm
Hijau
5 5 ×105 ±0.5% (D)
Biru
6 6 ×106 ±0.25% (C)
Ungu
7 7 ×107 ±0.1% (B)
Abu-abu
8 8 ×108 ±0.05% (A)
Putih
9 9 ×109
Emas
×0.1 ±5% (J)
Perak
×0.01 ±10% (K)
Polos ±20% (M)

Elektromagnetisme
Elektromagnetisme adalah fisika tentang medan elektromagnetik: sebuah bidang dalam fisika, yang mempelajari ruang, yang terdiri dari medan listrik dan medan magnet. Medan listrik dapat diproduksi oleh muatan listrik statik, dan memberikan kenaikan pada gaya listrik, yang menyebabkan listrik statik dan membuat aliran arus listrik dalam konduktor listrik. Medan magnetik dapat diproduksi oleh gerakan muatan listrik, superti arus listrik yang mengalir sepanjang kabel dan memberikan kenaikan pada gaya magnetik yang dihubungkan dengan magnet. Istilah "elektromagnetisme" berasal dari kenyataan bahwa medan listrik dan magnet adalah saling "berpelintiran", dan, dalam banyak kondisi, tidak mungkin untuk memisahakan keduanya. Contohnya, perubahan dalam medan magnet memberikan kenaikan ke medan listrik; ini adalah fenomena dari induksi elektromagnetik, yang merupakan dasar dari operasi generator listrik, motor induksi, dan transformer.
Istilah elektrodinamika kadangkala digunakan untuk menunjuk kek kombinasi dari elektromagnetisme dengan mekanika. Subjek ini berhadapan dengan efek dari medan elektromagnetik dalam sifat mekanika dari partikel yang bermuatan listrik.
Magnet

Pola medan magnet pada pasir besi yang ditaburkan diatas kertas.
Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Kata magnet (magnit) berasal dari bahasa Yunani magnítis líthos yang berarti batu Magnesian. Magnesia adalah nama sebuah wilayah di Yunani pada masa lalu yang kini bernama Manisa (sekarang berada di wilayah Turki) di mana terkandung batu magnet yang ditemukan sejak zaman dulu di wilayah tersebut.
Pada saat ini, suatu magnet adalah suatu materi yang mempunyai suatu medan magnet. Materi tersebut bisa dalam berwujud magnet tetap atau magnet tidak tetap. Magnet yang sekarang ini ada hampir semuanya adalah magnet buatan. Magnet selalu memiliki dua kutub yaitu: kutub utara (north/ N) dan kutub selatan (south/ S).
Walaupun magnet itu dipotong-potong, potongan magnet kecil tersebut akan tetap memiliki dua kutub. Magnet dapat menarik benda lain. Beberapa benda bahkan tertarik lebih kuat dari yang lain, yaitu bahan logam. Namun tidak semua logam mempunyai daya tarik yang sama terhadap magnet. Besi dan baja adalah dua contoh materi yang mempunyai daya tarik yang tinggi oleh magnet. Sedangkan oksigen cair adalah contoh materi yang mempunyai daya tarik yang rendah oleh magnet.
Satuan intensitas magnet menurut sistem metrik pada International System of Units (SI) adalah Tesla dan SI unit untuk total fluks magnetik adalah weber. 1 weber/m^2 = 1 tesla, yang mempengaruhi satu meter persegi.
Jenis magnet
Magnet tetap
Magnet tetap tidak memerlukan tenaga atau bantuan dari luar untuk menghasilkan daya magnet (berelektromagnetik).
Jenis magnet tetap selama ini yang diketahui terdapat pada:
• Neodymium Magnets, merupakan magnet tetap yang paling kuat.
• Samarium-Cobalt Magnets
• Ceramic Magnets
• Plastic Magnets
• Alnico Magnets
Magnet tidak tetap (remanen)
Magnet tidak tetap (remanen) tergantung pada medan listrik untuk menghasilkan medan magnet. Contoh magnet tidak tetap adalah elektromagnet.
Magnet buatan
Magnet buatan meliputi hampir seluruh magnet yang ada sekarang ini.
Bentuk magnet buatan antara lain:
• Magnet U
• Magnet ladam
• Magnet batang
• Magnet lingkaran
• Magnet jarum (kompas)
Cara membuat magnet
Cara membuat magnet antara lain:
• Digosok dengan magnet lain secara searah.
• Induksi magnet.
• Magnet diletakkan pada solenoida dan dialiri arus listrik searah (DC).
Bahan yang biasa dijadikan magnet adalah: besi dan baja. Besi lebih mudah untuk dijadikan magnet daripada baja. Tapi sifat kemagnetan besi lebih mudah hilang daripada baja. Oleh sebab itu, besi lebih sering digunakan untuk membuat elektromagnet.
Menghilangkan sifat kemagnetan
Cara menghilangkan sifat kemagnetan antara lain:
• Dibakar.
• Dibanting-banting.
• Dipukul-pukul.
• Magnet diletakkan pada solenoida dan dialiri arus listrik bolak-balik (AC)
Metoda gravitasi
Metoda gravitasi adalah suatu metoda eksplorasi yang mengukuran medan gravitasi pada kelompok-kelompok titik pada lokasi yang berbeda dalam suatu area tertentu. Tujuan dari eksplorasi ini adalah untuk mengasosiakan variasi dari perbedaan distribusi rapat massa dan juga jenis batuan.
Tujuan utama dari studi mendetil data gravitasi adalah untuk memberikan suatu pemahaman yang lebih baik mengenai lapisan bawah geologi. Metoda gravitasi ini secara relatif lebih murah, tidak mencemari dan tidak merusak (uji tidak merusak) dan termasuk dalam metoda jarak jauh yang sudah pula digunakan untuk mengamati permukaan bulan. Juga metoda ini tergolong pasif, dalam arti tidak perlu ada energi yang dimasukkan ke dalam tanah untuk mendapatkan data sebagaimana umumnya pengukuran.
Pengukuran percepatan gravitasi memberikan informasi mengenai densitas batuan bawah tanah. Terdapat rentang densitas yang amat lebar di antara berbagai jenis batuan bawah tanah, oleh karena itu seorang ahli geologi dapat melakukan inferensi atau deduksi mengenai strata atau lapisan-lapisan batuan berdasarkan data yang diperoleh. Patahan yang umumnya membuat terjadinya lompatan pada penyebaran densitas batuan, dapat teramati dengan metoda ini.

Comments

Popular posts from this blog

Berbagai Tipe Jenis Agregat

Perbedaan Penambahan Kimia Pada Beton

Konstruksi Jembatan Berdasarkan Material

Perihal Struktur Atas Dan Bawah Bangunan

Pengertian Dasar PLAXIS

Materi Terbaru